3.4.29 \(\int \frac {(-a+b x)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=57 \[ -\frac {(b x-a)^{3/2}}{x}+3 b \sqrt {b x-a}-3 \sqrt {a} b \tan ^{-1}\left (\frac {\sqrt {b x-a}}{\sqrt {a}}\right ) \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {47, 50, 63, 205} \begin {gather*} -\frac {(b x-a)^{3/2}}{x}+3 b \sqrt {b x-a}-3 \sqrt {a} b \tan ^{-1}\left (\frac {\sqrt {b x-a}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-a + b*x)^(3/2)/x^2,x]

[Out]

3*b*Sqrt[-a + b*x] - (-a + b*x)^(3/2)/x - 3*Sqrt[a]*b*ArcTan[Sqrt[-a + b*x]/Sqrt[a]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin {align*} \int \frac {(-a+b x)^{3/2}}{x^2} \, dx &=-\frac {(-a+b x)^{3/2}}{x}+\frac {1}{2} (3 b) \int \frac {\sqrt {-a+b x}}{x} \, dx\\ &=3 b \sqrt {-a+b x}-\frac {(-a+b x)^{3/2}}{x}-\frac {1}{2} (3 a b) \int \frac {1}{x \sqrt {-a+b x}} \, dx\\ &=3 b \sqrt {-a+b x}-\frac {(-a+b x)^{3/2}}{x}-(3 a) \operatorname {Subst}\left (\int \frac {1}{\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {-a+b x}\right )\\ &=3 b \sqrt {-a+b x}-\frac {(-a+b x)^{3/2}}{x}-3 \sqrt {a} b \tan ^{-1}\left (\frac {\sqrt {-a+b x}}{\sqrt {a}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 36, normalized size = 0.63 \begin {gather*} \frac {2 b (b x-a)^{5/2} \, _2F_1\left (2,\frac {5}{2};\frac {7}{2};1-\frac {b x}{a}\right )}{5 a^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-a + b*x)^(3/2)/x^2,x]

[Out]

(2*b*(-a + b*x)^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, 1 - (b*x)/a])/(5*a^2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.05, size = 55, normalized size = 0.96 \begin {gather*} \frac {\sqrt {b x-a} (2 (b x-a)+3 a)}{x}-3 \sqrt {a} b \tan ^{-1}\left (\frac {\sqrt {b x-a}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(-a + b*x)^(3/2)/x^2,x]

[Out]

(Sqrt[-a + b*x]*(3*a + 2*(-a + b*x)))/x - 3*Sqrt[a]*b*ArcTan[Sqrt[-a + b*x]/Sqrt[a]]

________________________________________________________________________________________

fricas [A]  time = 1.04, size = 105, normalized size = 1.84 \begin {gather*} \left [\frac {3 \, \sqrt {-a} b x \log \left (\frac {b x - 2 \, \sqrt {b x - a} \sqrt {-a} - 2 \, a}{x}\right ) + 2 \, {\left (2 \, b x + a\right )} \sqrt {b x - a}}{2 \, x}, -\frac {3 \, \sqrt {a} b x \arctan \left (\frac {\sqrt {b x - a}}{\sqrt {a}}\right ) - {\left (2 \, b x + a\right )} \sqrt {b x - a}}{x}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)^(3/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*sqrt(-a)*b*x*log((b*x - 2*sqrt(b*x - a)*sqrt(-a) - 2*a)/x) + 2*(2*b*x + a)*sqrt(b*x - a))/x, -(3*sqrt(
a)*b*x*arctan(sqrt(b*x - a)/sqrt(a)) - (2*b*x + a)*sqrt(b*x - a))/x]

________________________________________________________________________________________

giac [A]  time = 0.96, size = 58, normalized size = 1.02 \begin {gather*} -\frac {3 \, \sqrt {a} b^{2} \arctan \left (\frac {\sqrt {b x - a}}{\sqrt {a}}\right ) - 2 \, \sqrt {b x - a} b^{2} - \frac {\sqrt {b x - a} a b}{x}}{b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)^(3/2)/x^2,x, algorithm="giac")

[Out]

-(3*sqrt(a)*b^2*arctan(sqrt(b*x - a)/sqrt(a)) - 2*sqrt(b*x - a)*b^2 - sqrt(b*x - a)*a*b/x)/b

________________________________________________________________________________________

maple [A]  time = 0.01, size = 48, normalized size = 0.84 \begin {gather*} -3 \sqrt {a}\, b \arctan \left (\frac {\sqrt {b x -a}}{\sqrt {a}}\right )+2 \sqrt {b x -a}\, b +\frac {\sqrt {b x -a}\, a}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x-a)^(3/2)/x^2,x)

[Out]

2*b*(b*x-a)^(1/2)+a*(b*x-a)^(1/2)/x-3*b*arctan((b*x-a)^(1/2)/a^(1/2))*a^(1/2)

________________________________________________________________________________________

maxima [A]  time = 3.00, size = 47, normalized size = 0.82 \begin {gather*} -3 \, \sqrt {a} b \arctan \left (\frac {\sqrt {b x - a}}{\sqrt {a}}\right ) + 2 \, \sqrt {b x - a} b + \frac {\sqrt {b x - a} a}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)^(3/2)/x^2,x, algorithm="maxima")

[Out]

-3*sqrt(a)*b*arctan(sqrt(b*x - a)/sqrt(a)) + 2*sqrt(b*x - a)*b + sqrt(b*x - a)*a/x

________________________________________________________________________________________

mupad [B]  time = 0.04, size = 47, normalized size = 0.82 \begin {gather*} 2\,b\,\sqrt {b\,x-a}+\frac {a\,\sqrt {b\,x-a}}{x}-3\,\sqrt {a}\,b\,\mathrm {atan}\left (\frac {\sqrt {b\,x-a}}{\sqrt {a}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x - a)^(3/2)/x^2,x)

[Out]

2*b*(b*x - a)^(1/2) + (a*(b*x - a)^(1/2))/x - 3*a^(1/2)*b*atan((b*x - a)^(1/2)/a^(1/2))

________________________________________________________________________________________

sympy [B]  time = 2.84, size = 197, normalized size = 3.46 \begin {gather*} \begin {cases} - 3 i \sqrt {a} b \operatorname {acosh}{\left (\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}} \right )} + \frac {i a^{2}}{\sqrt {b} x^{\frac {3}{2}} \sqrt {\frac {a}{b x} - 1}} + \frac {i a \sqrt {b}}{\sqrt {x} \sqrt {\frac {a}{b x} - 1}} - \frac {2 i b^{\frac {3}{2}} \sqrt {x}}{\sqrt {\frac {a}{b x} - 1}} & \text {for}\: \left |{\frac {a}{b x}}\right | > 1 \\3 \sqrt {a} b \operatorname {asin}{\left (\frac {\sqrt {a}}{\sqrt {b} \sqrt {x}} \right )} - \frac {a^{2}}{\sqrt {b} x^{\frac {3}{2}} \sqrt {- \frac {a}{b x} + 1}} - \frac {a \sqrt {b}}{\sqrt {x} \sqrt {- \frac {a}{b x} + 1}} + \frac {2 b^{\frac {3}{2}} \sqrt {x}}{\sqrt {- \frac {a}{b x} + 1}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)**(3/2)/x**2,x)

[Out]

Piecewise((-3*I*sqrt(a)*b*acosh(sqrt(a)/(sqrt(b)*sqrt(x))) + I*a**2/(sqrt(b)*x**(3/2)*sqrt(a/(b*x) - 1)) + I*a
*sqrt(b)/(sqrt(x)*sqrt(a/(b*x) - 1)) - 2*I*b**(3/2)*sqrt(x)/sqrt(a/(b*x) - 1), Abs(a/(b*x)) > 1), (3*sqrt(a)*b
*asin(sqrt(a)/(sqrt(b)*sqrt(x))) - a**2/(sqrt(b)*x**(3/2)*sqrt(-a/(b*x) + 1)) - a*sqrt(b)/(sqrt(x)*sqrt(-a/(b*
x) + 1)) + 2*b**(3/2)*sqrt(x)/sqrt(-a/(b*x) + 1), True))

________________________________________________________________________________________